Methods of finding confidence sets  
Inverting tests  
Idea: 當我們做假設檢定 H 0 : θ = θ 0 H_0:\theta=\theta_0 H 0  : θ = θ 0    時,如果我們沒有拒絕 H 0 H_0 H 0   ,那麼我們可以說這組數據是“支持” θ = θ 0 \theta=\theta_0 θ = θ 0    的。因此,我們可以認為 θ 0 ∈ C ( X ~ ) \theta_0\in C(\utilde{X}) θ 0  ∈ C ( X  )  。那麼我們對所有 θ 0 \theta_0 θ 0    都作這樣的檢定,如果我們在資料 x ~ \utilde{x} x    下沒有拒絕這個 H 0 H_0 H 0   ,我們就把這個 θ 0 \theta_0 θ 0    放進 C ( x ~ ) C(\utilde{x}) C ( x  )  。這樣我們就得到了一個 confidence set。
EX  X 1 , ⋯   , X n ∼ iid U ( 0 , θ ) X_1, \cdots, X_n\overset{\text{iid}}{\sim}U(0, \theta) X 1  , ⋯ , X n  ∼ iid U ( 0 , θ ) 
H 0 : θ = θ 0 vs. H 1 : θ ≠ θ 0 H_0:\theta=\theta_0\quad\text{vs.}\quad H_1:\theta\neq\theta_0 H 0  : θ = θ 0  vs. H 1  : θ  = θ 0   
   ⟹    \implies ⟹   UMP level α \alpha α   test is rejects H 0 H_0 H 0    if x ( n ) > θ 0 x_{(n)}>\theta_0 x ( n )  > θ 0    or x ( n ) < θ 0 α 1 n x_{(n)}<\theta_0\alpha^\frac{1}{n} x ( n )  < θ 0  α n 1  
   ⟺    \iff ⟺   Note rejects H 0 H_0 H 0    if x ( n ) ≤ θ 0 x_{(n)}\le\theta_0 x ( n )  ≤ θ 0    and x ( n ) ≥ θ 0 α 1 n x_{(n)}\ge\theta_0\alpha^\frac{1}{n} x ( n )  ≥ θ 0  α n 1  
Note.
P θ 0 ( rej.  H 0 ) = α ∀ θ 0 > 0    ⟺    P θ 0 ( Not rej.  H 0 ) = 1 − α ∀ θ 0 > 0    ⟺    P θ ( X ( n ) ≤ θ ≤ X ( n ) α − 1 n ) = 1 − α ∀ θ > 0 \begin{align*}
    &P_{\theta_0}(\text{rej. }H_0) = \alpha \quad \forall\theta_0 > 0\\
    \iff& P_{\theta_0}(\text{Not rej. }H_0)=1-\alpha \quad \forall\theta_0 > 0\\
    \iff& P_{\theta}(X_{(n)}\le\theta\le X_{(n)}\alpha^{-\frac{1}{n}})=1-\alpha \quad \forall\theta > 0
\end{align*} ⟺ ⟺  P θ 0   ( rej.  H 0  ) = α ∀ θ 0  > 0 P θ 0   ( Not rej.  H 0  ) = 1 − α ∀ θ 0  > 0 P θ  ( X ( n )  ≤ θ ≤ X ( n )  α − n 1  ) = 1 − α ∀ θ > 0   
   ⟹      [ X ( n ) , X ( n ) α − 1 n ] \implies [X_{(n)}, X_{(n)}\alpha^{-\frac{1}{n}}] ⟹ [ X ( n )  , X ( n )  α − n 1  ]   is a 1 − α 1-\alpha 1 − α   UMA  confidence set for θ \theta θ  .
我們可以從 UMP α \alpha α   test 得到 UMA conf coef 1 − α 1-\alpha 1 − α   的 confidence set。 
 
Inverting tests Method :
Let a non-randomized level α \alpha α   test
ϕ ( X ~ ) = { 1 if  X ~ ∈ B ( θ 0 ) =  rejection region 0 if  X ~ ∈ ( B ( θ 0 ) ) c ≜ A ( θ 0 ) =  acceptance region \phi(\utilde{X}) = \begin{cases}
    1 & \text{if } \utilde{X}\in B(\theta_0)=\text{ rejection region}\\
    0 & \text{if } \utilde{X}\in (B(\theta_0))^c\triangleq A(\theta_0)=\text{ acceptance region}
\end{cases} ϕ ( X  ) = { 1 0  if  X  ∈ B ( θ 0  ) =  rejection region if  X  ∈ ( B ( θ 0  ) ) c ≜ A ( θ 0  ) =  acceptance region  Def C ( X ~ ) C(\utilde{X}) C ( X  )   with X ~ ∈ A ( θ 0 )    ⟺    θ 0 ∈ C ( X ~ ) \utilde{X}\in A(\theta_0)\iff\theta_0\in C(\utilde{X}) X  ∈ A ( θ 0  ) ⟺ θ 0  ∈ C ( X  )  , then
∀ θ 0 P θ 0 ( θ 0 ∈ C ( X ~ ) ) = P θ 0 ( X ~ ∈ A ( θ 0 ) ) = 1 − P θ 0 ( X ~ ∈ B ( θ 0 ) ) = 1 − α \begin{align*}
    \forall\theta_0\quad P_{\theta_0}(\theta_0\in C(\utilde{X})) &= P_{\theta_0}(\utilde{X}\in A(\theta_0))\\
    &=1-P_{\theta_0}(\utilde{X}\in B(\theta_0))\\
    &=1-\alpha
\end{align*} ∀ θ 0  P θ 0   ( θ 0  ∈ C ( X  ))  = P θ 0   ( X  ∈ A ( θ 0  )) = 1 − P θ 0   ( X  ∈ B ( θ 0  )) = 1 − α  i.e. ∀ θ P θ ( θ ∈ C ( X ~ ) ) = 1 − α    ⟹    C ( X ~ ) \forall\theta P_\theta(\theta\in C(\utilde{X}))=1-\alpha\implies C(\utilde{X}) ∀ θ P θ  ( θ ∈ C ( X  )) = 1 − α ⟹ C ( X  )   is a 1 − α 1-\alpha 1 − α   confidence set for θ \theta θ  .
 
In fact, θ 0 ∈ C ( X ~ )    ⟺    X ~ ∈ A ( θ 0 ) \theta_0\in C(\utilde{X})\iff\utilde{X}\in A(\theta_0) θ 0  ∈ C ( X  ) ⟺ X  ∈ A ( θ 0  )  。因此我們可以通過檢定的結果來得到 confidence set,也可以通過 confidence set 來得到檢定的結果。
也就是說,there is Duality(一體兩面) relationship between confidence sets and hypothesis tests. 它們問的是同一個問題,只是從不同的角度來看。假設檢定是給定 θ \theta θ  ,看數據是否支持這個 θ \theta θ  ;而 confidence set 是給定數據,看這個數據支持哪些 θ \theta θ  。
因此我們可以利用已知結果的檢定來得到 confidence set,並且
UMP    ⟹    \implies ⟹   UMA 
UMPU    ⟹    \implies ⟹   UMAU 
 
EX  X 1 , ⋯   , X n ∼ iid U ( 0 , θ ) X_1,\cdots, X_n\overset{\text{iid}}{\sim}U(0, \theta) X 1  , ⋯ , X n  ∼ iid U ( 0 , θ )  . Find UMAU 1 − α 1-\alpha 1 − α   conf lower bound for θ \theta θ   (θ ≥ L ( X ~ ) \theta\ge L(\utilde{X}) θ ≥ L ( X  )  ).
   ⟹    \implies ⟹   UMP level α \alpha α   test for H 0 : θ ≤ θ 0 H_0:\theta\le\theta_0 H 0  : θ ≤ θ 0    vs. H 1 : θ > θ 0 H_1:\theta>\theta_0 H 1  : θ > θ 0    is rejects H 0 H_0 H 0    if x ( n ) ≤ θ 0 x_{(n)}\le\theta_0 x ( n )  ≤ θ 0  
i.e. Not reject  H 0 H_0 H 0    if x ( n ) ≤ θ 0 ( 1 − α ) 1 n x_{(n)}\le\theta_0(1-\alpha)^{\frac{1}{n}} x ( n )  ≤ θ 0  ( 1 − α ) n 1  
i.e. {   x ~ : x ( n ) ( 1 − α ) − 1 n ≤ θ 0   } = A ( θ 0 ) \set{\utilde{x}:x_{(n)}(1-\alpha)^{-\frac{1}{n}}\le\theta_0}=A(\theta_0) { x  : x ( n )  ( 1 − α ) − n 1  ≤ θ 0  } = A ( θ 0  ) 
   ⟹    C ( X ~ ) = {   θ 0 : X ~ ∈ A ( θ 0 )   } = {   θ 0 : θ 0 ≥ X n ( 1 − α ) − 1 n   } = [ X ( n ) ( 1 − α ) − 1 n , ∞ ) \implies C(\utilde{X})=\set{\theta_0:\utilde{X}\in A(\theta_0)}=\set{\theta_0:\theta_0\ge X_{n}(1-\alpha)^{-\frac{1}{n}}}=[X_{(n)}(1-\alpha)^{-\frac{1}{n}}, \infty) ⟹ C ( X  ) = { θ 0  : X  ∈ A ( θ 0  ) } = { θ 0  : θ 0  ≥ X n  ( 1 − α ) − n 1  } = [ X ( n )  ( 1 − α ) − n 1  , ∞ ) 
is UMA(hence UMAU) 1 − α 1-\alpha 1 − α   confidence set for θ \theta θ  .
如果我們關注的是 upper bound,那麼我們同樣做鑒定,得到 reject H 0 H_0 H 0    if x ( n ) < θ 0 α 1 n x_{(n)}<\theta_0\alpha^{\frac{1}{n}} x ( n )  < θ 0  α n 1   。而他的接受區域是 {   x ~ : x ( n ) ≥ θ 0 α 1 n   } \set{\utilde{x}:x_{(n)}\ge\theta_0\alpha^{\frac{1}{n}}} { x  : x ( n )  ≥ θ 0  α n 1  }  。因此我們可以得到 UMAU 1 − α 1-\alpha 1 − α   confidence set for θ \theta θ   is ( − ∞ , X ( n ) α − 1 n ] (-\infty, X_{(n)}\alpha^{-\frac{1}{n}}] ( − ∞ , X ( n )  α − n 1  ]  。
 
EX 
⊥ < X 1 , ⋯   , X n ∼ iid N ( μ , σ 2 ) Y 1 , ⋯   , Y m ∼ iid N ( μ , σ 2 ) \perp \Big< \begin{align*}
    &X_1, \cdots, X_n\overset{\text{iid}}{\sim}N(\mu, \sigma^2)\\
    &Y_1, \cdots, Y_m\overset{\text{iid}}{\sim}N(\mu, \sigma^2)
\end{align*} ⊥ ⟨  X 1  , ⋯ , X n  ∼ iid N ( μ , σ 2 ) Y 1  , ⋯ , Y m  ∼ iid N ( μ , σ 2 )   
C ( X ~ , Y ~ ) = {   λ : λ ≥ L ( X ~ , Y ~ )   } C(\utilde{X}, \utilde{Y})=\set{\lambda:\lambda\ge L(\utilde{X}, \utilde{Y})} C ( X  , Y  ) = { λ : λ ≥ L ( X  , Y  ) }   with θ = ( μ x , μ y , σ x 2 , σ y 2 ) \theta=(\mu_x, \mu_y, \sigma^2_x, \sigma^2_y) θ = ( μ x  , μ y  , σ x 2  , σ y 2  ) 
   ⟹    \implies ⟹   UMAU lower bound 1 − α 1-\alpha 1 − α   for λ = σ x 2 σ y 2 \lambda=\frac{\sigma^2_x}{\sigma^2_y} λ = σ y 2  σ x 2   
   ⟹    \implies ⟹   UMPU level α \alpha α   for
H 0 : σ x 2 σ y 2 = λ = λ 0 vs. H 1 : σ x 2 σ y 2 = λ > λ 0 H_0:\frac{\sigma^2_x}{\sigma^2_y}=\lambda=\lambda_0\quad\text{vs.}\quad H_1:\frac{\sigma^2_x}{\sigma^2_y}=\lambda>\lambda_0 H 0  : σ y 2  σ x 2   = λ = λ 0  vs. H 1  : σ y 2  σ x 2   = λ > λ 0   
rejects H 0 H_0 H 0    if S x 2 / σ x 2 S y 2 / σ y 2 > F n − 1 , m − 1 ( α )    ⟺    S x 2 S Y 2 > λ 0 F n − 1 , m − 1 ( α ) \frac{S^2_x/\sigma^2_x}{S^2_y/\sigma^2_y}>F_{n-1, m-1}(\alpha)\iff \frac{S^2_x}{S^2_Y}>\lambda_0F_{n-1, m-1}(\alpha) S y 2  / σ y 2  S x 2  / σ x 2   > F n − 1 , m − 1  ( α ) ⟺ S Y 2  S x 2   > λ 0  F n − 1 , m − 1  ( α )   where λ 0 = H 0 σ x 2 σ y 2 \lambda_0\overset{H_0}{=}\frac{\sigma^2_x}{\sigma^2_y} λ 0  = H 0  σ y 2  σ x 2   
i.e. Not reject H 0 H_0 H 0    if S x 2 S y 2 ≤ λ 0 F n − 1 , m − 1 ( α )    ⟹    λ ∈ C ( X ~ , Y ~ ) = {   λ : λ ≤ S X 2 S Y 2 F n − 1 , m − 1 , α − 1   } \frac{S^2_x}{S^2_y}\le\lambda_0F_{n-1, m-1}(\alpha)\implies\lambda\in C(\utilde{X}, \utilde{Y})=\set{\lambda:\lambda\le\frac{S^2_X}{S^2_Y}F_{n-1,m-1,\alpha}^{-1}} S y 2  S x 2   ≤ λ 0  F n − 1 , m − 1  ( α ) ⟹ λ ∈ C ( X  , Y  ) = { λ : λ ≤ S Y 2  S X 2   F n − 1 , m − 1 , α − 1  } 
i.e. [ S X 2 S Y 2 1 F n − 1 , m − 1 , α , ∞ ) [\frac{S^2_X}{S^2_Y}\frac{1}{F_{n-1,m-1,\alpha}},\infty) [ S Y 2  S X 2   F n − 1 , m − 1 , α  1  , ∞ )   is 1 − α 1-\alpha 1 − α   UMAU lower bound for λ = σ x 2 σ y 2 \lambda=\frac{\sigma^2_x}{\sigma^2_y} λ = σ y 2  σ x 2    .
Pivot  
A r.v. K ( X ~ ; θ ) K(\utilde{X};\theta) K ( X  ; θ )   is called a pivot     ⟺    K ( X ~ ; θ ) \iff K(\utilde{X};\theta) ⟺ K ( X  ; θ )   's dist ⊥ θ \perp\theta ⊥ θ 
 
EX  X 1 , ⋯   , X n ∼ iid N ( μ , σ 2 ) X_1,\cdots, X_n\overset{\text{iid}}{\sim}N(\mu, \sigma^2) X 1  , ⋯ , X n  ∼ iid N ( μ , σ 2 )  ,
n ( X ˉ − μ ) σ ∼ N ( 0 , 1 ) ⊥ μ , σ 2 \frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}\sim N(0, 1) \perp \mu, \sigma^2 σ n  ( X ˉ − μ )  ∼ N ( 0 , 1 ) ⊥ μ , σ 2  
If K ( X ~ , θ ) K(\utilde{X},\theta) K ( X  , θ )   is a pivot, then ∀ \forall ∀   set B B B  , P ( K ( X ~ , θ ) ∈ B ) ⊥ θ P(K(\utilde{X},\theta)\in B)\perp\theta P ( K ( X  , θ ) ∈ B ) ⊥ θ 
   ⟹    \implies ⟹   Given α ∈ ( 0 , 1 ) , ∃ B α \alpha\in(0, 1), \exist B_\alpha α ∈ ( 0 , 1 ) , ∃ B α    s.t. P ( K ( X ~ , θ ) ∈ B α ) = 1 − α P(K(\utilde{X},\theta)\in B_\alpha)=1-\alpha P ( K ( X  , θ ) ∈ B α  ) = 1 − α  . i.e. inf  θ P ( K ∈ B α ) = 1 − α \inf_\theta P(K\in B_\alpha)=1-\alpha inf  θ  P ( K ∈ B α  ) = 1 − α 
C ( X ~ ) = {   θ : K ( X ~ , θ ) ∈ B α   } C(\utilde{X})=\set{\theta:K(\utilde{X},\theta)\in B_\alpha} C ( X  ) = { θ : K ( X  , θ ) ∈ B α  } we have
∀ θ P θ ( θ ∈ C ( X ~ ) ) = P ( K ( X ~ , θ ) ∈ B α ) = 1 − α \forall\theta\quad P_\theta(\theta\in C(\utilde{X}))=P(K(\utilde{X},\theta)\in B_\alpha)=1-\alpha ∀ θ P θ  ( θ ∈ C ( X  )) = P ( K ( X  , θ ) ∈ B α  ) = 1 − α    ⟹    inf  θ P θ ( θ ∈ C ( X ~ ) ) = 1 − α \implies \inf_\theta P_\theta(\theta\in C(\utilde{X}))=1-\alpha ⟹ inf  θ  P θ  ( θ ∈ C ( X  )) = 1 − α  , i.e. C ( X ~ ) C(\utilde{X}) C ( X  )   is a 1 − α 1-\alpha 1 − α   confidence set for θ \theta θ  .
 
EX  X 1 , ⋯   , X n ∼ iid N ( μ , σ 0 2 ) X_1,\cdots, X_n\overset{\text{iid}}{\sim}N(\mu, \sigma^2_0) X 1  , ⋯ , X n  ∼ iid N ( μ , σ 0 2  )   with σ 0 2 \sigma^2_0 σ 0 2    known. Given α ∈ ( 0 , 1 ) \alpha\in(0, 1) α ∈ ( 0 , 1 )  , find 1 − α 1-\alpha 1 − α   confidence set for μ \mu μ  .
   ⟹    n ( X ˉ − μ ) σ 0 ∼ N ( 0 , 1 ) ⊥ μ \implies \frac{\sqrt{n}(\bar{X}-\mu)}{\sigma_0}\sim N(0, 1)\perp\mu ⟹ σ 0  n  ( X ˉ − μ )  ∼ N ( 0 , 1 ) ⊥ μ  
Let B α = [ − Z α 1 , Z α 2 ] B_\alpha=[-Z_{\alpha_1}, Z_{\alpha_2}] B α  = [ − Z α 1   , Z α 2   ]   with α 1 + α 2 = α    ⟹    P ( n ( X ˉ − μ ) σ 0 ∈ B α ) = 1 − α \alpha_1+\alpha_2=\alpha\implies P\left(\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma_0}\in B_\alpha\right)=1-\alpha α 1  + α 2  = α ⟹ P ( σ 0  n  ( X ˉ − μ )  ∈ B α  ) = 1 − α 
C ( X ~ ) = {   μ : − Z α 1 ≤ n ( X ˉ − μ ) σ 0 ≤ Z α 2   } = {   μ : X ˉ − σ 0 Z α 1 n ≤ μ ≤ X ˉ + σ 0 Z α 2 n   } = [ X ˉ − σ 0 Z α 1 n , X ˉ + σ 0 Z α 2 n ] \begin{align*}
    C(\utilde{X})&=\set{\mu:-Z_{\alpha_1}\le\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma_0}\le Z_{\alpha_2}}\\
    &=\set{\mu:\bar{X}-\frac{\sigma_0Z_{\alpha_1}}{\sqrt{n}}\le\mu\le\bar{X}+\frac{\sigma_0Z_{\alpha_2}}{\sqrt{n}}}\\
    &=\left[\bar{X}-\frac{\sigma_0Z_{\alpha_1}}{\sqrt{n}}, \bar{X}+\frac{\sigma_0Z_{\alpha_2}}{\sqrt{n}}\right]
\end{align*} C ( X  )  = { μ : − Z α 1   ≤ σ 0  n  ( X ˉ − μ )  ≤ Z α 2