複合假設(Composite Hypothese)
單邊問題(One-Sided Problem)
在做 simple H 0 H_0 H 0 和 simple H 1 H_1 H 1 的檢定時,N-P Lemma 可以直接給我們一個 MP 檢定。而它還可以幫我們找到某些 composite H 0 H_0 H 0 和 composite H 1 H_1 H 1 的 UMP 檢定。
對於 H 0 : θ ∈ ω 0 H_0: \theta\in\omega_0 H 0 : θ ∈ ω 0 v.s. H 1 : θ ∈ ω 1 H_1: \theta\in\omega_1 H 1 : θ ∈ ω 1 。因爲 N-P lemma 告訴我們,在 level α \alpha α 下找到的 MP test,對於 level < α <\alpha < α 時也會是 MP test。那麼如果還有 ∀ θ ∈ ω 1 \forall \theta\in\omega_1 ∀ θ ∈ ω 1 可以得到同一個 ϕ \phi ϕ ,那麼就可以把複雜的檢定變成簡單的檢定,並使用 N-P Lemma。
記得 f ( X ~ ; θ ) = g ( T : θ ) h ( X ~ ) f(\utilde{X};\theta)=g(T:\theta)h(\utilde{X}) f ( X ; θ ) = g ( T : θ ) h ( X ) with T = T ( X ~ ) T=T(\utilde{X}) T = T ( X ) 是 θ \theta θ 的 sufficient statistic,並且我們可以讓 g ( T ; θ ) g(T;\theta) g ( T ; θ ) 是 pdf。
因此如果一個滿足 N-P Lemma 的檢定函數,i.e. 拒絕 H 0 ⟺ f ( x ~ ; θ 1 ) > c f ( x ~ ; θ 0 ) ⟺ g ( t ; θ 1 ) > c g ( t ; θ 0 ) H_0\iff f(\utilde{x};\theta_1)>cf(\utilde{x};\theta_0)\iff g(t;\theta_1)>cg(t;\theta_0) H 0 ⟺ f ( x ; θ 1 ) > c f ( x ; θ 0 ) ⟺ g ( t ; θ 1 ) > c g ( t ; θ 0 )
EX : X 1 , ⋯ , X n ∼ iid N ( θ , σ 0 2 ) X_1, \cdots, X_n \overset{\text{iid}}{\sim}N(\theta, \sigma^2_0) X 1 , ⋯ , X n ∼ iid N ( θ , σ 0 2 )
H 0 : θ = θ 0 v.s. H 1 : θ = θ 1 H_0:\theta=\theta_0 \text{ v.s. } H_1:\theta=\theta_1 H 0 : θ = θ 0 v.s. H 1 : θ = θ 1
⟹ \implies ⟹ MP level α \alpha α 檢定是:拒絕 H 0 H_0 H 0 if X ˉ − θ 0 σ 0 / n > Z α \frac{\bar{X}-\theta_0}{\sigma_0/\sqrt{n}}>Z_\alpha σ 0 / n X ˉ − θ 0 > Z α 。這對於任何 θ 1 > θ 0 \theta_1>\theta_0 θ 1 > θ 0 都適用。
注意到
E θ ϕ ( X ~ ) = P θ ( X ˉ − θ 0 σ 0 / n > Z α ) = 1 − Φ ( n σ 2 ( θ 0 − θ ) + Z α ) ⟹ d d θ E θ ϕ ( X ~ ) = n σ 0 ϕ ( n σ 0 ( θ 0 − θ ) + Z α ) > 0 ⟹ sup θ ≤ θ 0 E θ ϕ ( X ~ ) = E θ 0 ϕ ( X ~ ) = α i.e. ϕ is level α test for H 0 ∗ : θ ≤ θ 0 ⟹ For testing H 0 : θ ≤ θ 0 v.s. H 1 : θ > θ 0 , we can use the same ϕ \begin{align*}
&E_\theta\phi(\utilde{X})=P_\theta\left(\frac{\bar{X}-\theta_0}{\sigma_0/\sqrt{n}}>Z_\alpha\right)=1-\Phi(\frac{\sqrt{n}}{\sigma^2}(\theta_0-\theta)+Z_\alpha)\\
\implies& \frac{d}{d\theta} E_\theta\phi(\utilde{X})=\frac{\sqrt{n}}{\sigma_0}\phi(\frac{\sqrt{n}}{\sigma_0}(\theta_0-\theta)+Z_\alpha)>0\\
\implies& \sup_{\theta\le\theta_0}E_\theta \phi(\utilde{X})=E_{\theta_0}\phi(\utilde{X})=\alpha\\
& \text{i.e. }\phi\text{ is level }\alpha\text{ test for }H^*_0:\theta\le\theta_0\\
\implies& \text{For testing }H_0:\theta\le\theta_0\text{ v.s. }H_1:\theta>\theta_0\text{, we can use the same }\phi
\end{align*} ⟹ ⟹ ⟹ E θ ϕ ( X ) = P θ ( σ 0 / n X ˉ − θ 0 > Z α ) = 1 − Φ ( σ 2 n ( θ 0 − θ ) + Z α ) d θ d E θ ϕ ( X ) = σ 0 n ϕ ( σ 0 n ( θ 0 − θ ) + Z α ) > 0 θ ≤ θ 0 sup E θ ϕ ( X ) = E θ 0 ϕ ( X ) = α i.e. ϕ is level α test for H 0 ∗ : θ ≤ θ 0 For testing H 0 : θ ≤ θ 0 v.s. H 1 : θ > θ 0 , we can use the same ϕ
X ~ ∼ f ( x ~ ; θ ) , θ ∈ Ω \utilde{X}\sim f(\utilde{x};\theta), \theta\in\Omega X ∼ f ( x ; θ ) , θ ∈ Ω , let T = T ( X ~ ) T=T(\utilde{X}) T = T ( X ) be suff for θ \theta θ and g ( t ; θ ) g(t;\theta) g ( t ; θ ) be its pdf.
Given ω 0 ⊂ Ω , ω 1 ⊂ Ω \omega_0\subset\Omega, \omega_1\subset\Omega ω 0 ⊂ Ω , ω 1 ⊂ Ω with ω 0 ∩ ω 1 = ∅ \omega_0\cap\omega_1=\empty ω 0 ∩ ω 1 = ∅ .
For tesing H 0 : θ ∈ ω 0 H_0: \theta\in\omega_0 H 0 : θ ∈ ω 0 v.s. H 1 : θ ∈ ω 1 H_1: \theta\in\omega_1 H 1 : θ ∈ ω 1 . Suppose a test ϕ ( T ) \phi(T) ϕ ( T ) with:
sup θ ∈ ω 0 E θ ϕ ( t ) = α \sup_{\theta\in\omega_0}E_\theta\phi(t)=\alpha sup θ ∈ ω 0 E θ ϕ ( t ) = α
∃ θ 0 ∈ ω 0 \exist \theta_0\in\omega_0 ∃ θ 0 ∈ ω 0 s.t. E θ 0 ϕ ( T ) = α E_{\theta_0}\phi(T)=\alpha E θ 0 ϕ ( T ) = α and ∀ θ ∈ ω 1 , ∃ c > 0 \forall \theta\in\omega_1, \exist c>0 ∀ θ ∈ ω 1 , ∃ c > 0 s.t.
ϕ ( T ) = { 1 if g ( t ; θ 1 ) > c g ( t ; θ 0 ) 0 if g ( t ; θ 1 ) < c g ( t ; θ 0 ) \phi(T)=\begin{cases}
1 & \text{if } g(t;\theta_1)>cg(t;\theta_0)\\
0 & \text{if } g(t;\theta_1)<cg(t;\theta_0)
\end{cases} ϕ ( T ) = { 1 0 if g ( t ; θ 1 ) > c g ( t ; θ 0 ) if g ( t ; θ 1 ) < c g ( t ; θ 0 )
⟹ \implies ⟹ ϕ ( T ) \phi(T) ϕ ( T ) is UMP level α \alpha α test.
Note: ∀ θ ∈ ω 1 \forall \theta\in\omega_1 ∀ θ ∈ ω 1 find the same ϕ \phi ϕ
MLR
Monotone Likelihood Ratio (MLR) :
X ~ ∼ f ( x ~ ; θ ) , θ ∈ ω ⊂ R \utilde{X}\sim f(\utilde{x};\theta), \theta\in\omega\subset\R X ∼ f ( x ; θ ) , θ ∈ ω ⊂ R and T = T ( X ~ ) T=T(\utilde{X}) T = T ( X ) is suff for θ \theta θ with pdf g ( t ; θ ) g(t;\theta) g ( t ; θ ) .
Suppose ∀ θ 2 > θ 1 \forall \theta_2>\theta_1 ∀ θ 2 > θ 1
f ( x ~ ; θ 2 ) f ( x ~ ; θ 1 ) = g ( t ; θ 2 ) g ( t ; θ 1 ) is monotone in v ( t ) \frac{f(\utilde{x};\theta_2)}{f(\utilde{x};\theta_1)}=\frac{g(t;\theta_2)}{g(t;\theta_1)} \quad \text{is monotone in } v(t) f ( x ; θ 1 ) f ( x ; θ 2 ) = g ( t ; θ 1 ) g ( t ; θ 2 ) is monotone in v ( t ) ⟹ f ( x ~ ; θ ) \implies f(\utilde{x};\theta) ⟹ f ( x ; θ ) (or g ( t ; θ ) g(t;\theta) g ( t ; θ ) ) has MLR.
假設 f f f 有 MLR, f ( x ~ ; θ 1 ) > c f ( x ~ ; θ 0 ) ⟺ f ( x ~ ; θ 1 ) / f ( x ~ ; θ 0 ) > c f(\utilde{x};\theta_1)>cf(\utilde{x};\theta_0) \iff f(\utilde{x};\theta_1)/f(\utilde{x};\theta_0)>c f ( x ; θ 1 ) > c f ( x ; θ 0 ) ⟺ f ( x ; θ 1 ) / f ( x ; θ 0 ) > c
如果 θ 1 > θ 0 \theta_1>\theta_0 θ 1 > θ 0 ,則 g ( t ; θ 1 ) / g ( t ; θ 0 ) g(t;\theta_1)/g(t;\theta_0) g ( t ; θ 1 ) / g ( t ; θ 0 ) 是單調遞增的,i.e. v ( t ) v(t) v ( t ) 越大,g ( t ; θ 1 ) / g ( t ; θ 0 ) g(t;\theta_1)/g(t;\theta_0) g ( t ; θ 1 ) / g ( t ; θ 0 ) 越大。
如果 θ 1 < θ 0 \theta_1<\theta_0 θ 1 < θ 0 ,則 g ( t ; θ 1 ) / g ( t ; θ 0 ) g(t;\theta_1)/g(t;\theta_0) g ( t ; θ 1 ) / g ( t ; θ 0 ) 是單調遞減的,i.e. v ( t ) v(t) v ( t ) 越小,g ( t ; θ 1 ) / g ( t ; θ 0 ) g(t;\theta_1)/g(t;\theta_0) g ( t ; θ 1 ) / g ( t ; θ 0 ) 越大。
∃ k \exist k ∃ k s.t.
⟺ { v ( t ) > k if θ 1 > θ 0 v ( t ) < k if θ 1 < θ 0 \iff \begin{cases}
v(t)>k & \text{if } \theta_1>\theta_0\\
v(t)<k & \text{if } \theta_1<\theta_0
\end{cases} ⟺ { v ( t ) > k v ( t ) < k if θ 1 > θ 0 if θ 1 < θ 0
因此當在 v ( t ) v(t) v ( t ) 下具有 MLR 時,作檢定:
H 0 : θ = θ 0 H_0:\theta=\theta_0 H 0 : θ = θ 0 v.s. H 1 : θ = θ 1 H_1:\theta=\theta_1 H 1 : θ = θ 1 (θ 1 > θ 0 \theta_1>\theta_0 θ 1 > θ 0 )
拒絕 H 0 H_0 H 0 if v ( T ) > k v(T)>k v ( T ) > k 會是 MP 檢定。
H 0 : θ = θ 0 H_0:\theta=\theta_0 H 0 : θ = θ 0 v.s. H 1 : θ = θ 1 H_1:\theta=\theta_1 H 1 : θ = θ 1 (θ 1 < θ 0 \theta_1<\theta_0 θ 1 < θ 0 )
拒絕 H 0 H_0 H 0 if v ( T ) < k v(T)<k v ( T ) < k 會是 MP 檢定。
X ~ ∼ f ( x ~ ; θ ) , T = T ( X ~ ) \utilde{X}\sim f(\utilde{x};\theta), T=T(\utilde{X}) X ∼ f ( x ; θ ) , T = T ( X ) is suff for θ \theta θ with pdf g ( t ; θ ) g(t;\theta) g ( t ; θ ) has MLR in v ( t ) v(t) v ( t ) . Then for test:
H 0 : θ = θ 0 H_0:\theta=\theta_0 H 0 : θ = θ 0 v.s. H 1 : θ = θ 1 H_1:\theta=\theta_1 H 1 : θ = θ 1 (θ 1 > θ 0 \theta_1>\theta_0 θ 1 > θ 0 )
ϕ ( X ~ ) = ϕ ( T ) = { 1 if v ( T ) > k 0 if v ( T ) < k with E θ 0 ϕ ( T ) = α \phi(\utilde{X})=\phi(T)=\begin{cases}
1 & \text{if } v(T)>k\\
0 & \text{if } v(T)<k
\end{cases}
\quad \text{with } E_{\theta_0}\phi(T)=\alpha ϕ ( X ) = ϕ ( T ) = { 1 0 if v ( T ) > k if v ( T ) < k with E θ 0 ϕ ( T ) = α
is UMP level α \alpha α test.
H 0 : θ = θ 0 H_0: \theta=\theta_0 H 0 : θ = θ 0 v.s. H 1 : θ > θ 0 H_1:\theta>\theta_0 H 1 : θ > θ 0
UMP level α \alpha α test is also ϕ ( T ) \phi(T) ϕ ( T ) in (1).
H 0 : θ ≤ θ 0 H_0: \theta\le\theta_0 H 0 : θ ≤ θ 0 v.s. H 1 : θ > θ 0 H_1:\theta>\theta_0 H 1 : θ > θ 0
UMP level α \alpha α test is also ϕ ( T ) \phi(T) ϕ ( T ) in (1)
and its power function ↗ \nearrow ↗ in θ \theta θ .
H 0 : θ ≥ θ 0 H_0: \theta\ge\theta_0 H 0 : θ ≥ θ 0 v.s. H 1 : θ < θ 0 H_1:\theta<\theta_0 H 1 : θ < θ 0
UMP level α \alpha α test is
ϕ ( X ~ ) = { 1 if v ( T ) < k 0 if v ( T ) > k \phi(\utilde{X})=\begin{cases}
1 & \text{if } v(T)<k\\
0 & \text{if } v(T)>k
\end{cases} ϕ ( X ) = { 1 0 if v ( T ) < k if v ( T ) > k
and its power function ↘ \searrow ↘ in θ \theta θ .
EX : X 1 , ⋯ , X n ∼ iid e − ( x − θ ) , x ≥ θ X_1, \cdots, X_n\overset{\text{iid}}{\sim}e^{-(x-\theta)}, x\ge\theta X 1 , ⋯ , X n ∼ iid e − ( x − θ ) , x ≥ θ
UMP level α \alpha α test for H 0 : θ ≤ θ 0 H_0:\theta\le\theta_0 H 0 : θ ≤ θ 0 v.s. H 1 : θ > θ 0 H_1:\theta>\theta_0 H 1 : θ > θ 0
Note:
f ( x ~ ; θ ) = ∏ i = 1 n e − ( x i − θ ) I ( x i ≥ θ ) = e − ∑ x i + n θ I ( x ( 1 ) ≥ θ ) f(\utilde{x};\theta)=\prod_{i=1}^ne^{-(x_i-\theta)}I(x_i\ge\theta)=e^{-\sum x_i+n\theta}I(x_{(1)}\ge\theta) f ( x ; θ ) = i = 1 ∏ n e − ( x i − θ ) I ( x i ≥ θ ) = e − ∑ x i + n θ I ( x ( 1 ) ≥ θ )
⟹ ∀ θ 2 > θ 1 , f ( x ~ ; θ 2 ) f ( x ~ ; θ 1 ) = e n ( θ 2 − θ 1 ) I ( x ( 1 ) ≥ θ 2 ) I ( x ( 1 ) ≥ θ 1 ) is monotone in x ( 1 ) \implies \forall\theta_2>\theta_1, \frac{f(\utilde{x};\theta_2)}{f(\utilde{x};\theta_1)}=e^{n(\theta_2-\theta_1)}\frac{I(x_{(1)}\ge\theta_2)}{I(x_{(1)}\ge\theta_1)}\text{ is monotone in } x_{(1)} ⟹ ∀ θ 2 > θ 1 , f ( x ; θ 1 ) f ( x ; θ 2 ) = e n ( θ 2 − θ 1 ) I ( x ( 1 ) ≥ θ 1 ) I ( x ( 1 ) ≥ θ 2 ) is monotone in x ( 1 )
i.e. f ( x ~ ; θ ) f(\utilde{x};\theta) f ( x ; θ ) has MLR in x ( 1 ) x_{(1)} x ( 1 ) . UMP level α \alpha α test is:
ϕ ( x ~ ) = x ( 1 ) ~ = { 1 if x ( 1 ) > k r if x ( 1 ) = k 0 if x ( 1 ) < k \phi(\utilde{x})=\utilde{x_{(1)}}=\begin{cases}
1 & \text{if } x_{(1)}>k\\
r & \text{if } x_{(1)}=k\\
0 & \text{if } x_{(1)}< k
\end{cases} ϕ ( x ) = x ( 1 ) = ⎩ ⎨ ⎧ 1 r 0 if x ( 1 ) > k if x ( 1 ) = k if x ( 1 ) < k
s.t. α = E θ 0 ϕ ( x ~ ) = P θ 0 ( x ( 1 ) > k ) + r ⋅ P θ 0 ( x ( 1 ) = k ) = P θ 0 ( x i > k , ∀ i ) = iid [ P θ 0 ( x 1 > k ) ] n = [ ∫ k ∞ e − ( x − θ 0 ) d x ] n = [ e θ 0 ( − e − x ∣ k ∞ ) ] n = e n θ 0 − n k ⟹ k = θ 0 − ln α n \begin{align*}
\text{s.t. } \alpha&=E_{\theta_0}\phi(\utilde{x})=P_{\theta_0}(x_{(1)}>k)+r\cdot P_{\theta_0}(x_{(1)}=k)\\
&=P_{\theta_0}(x_i>k, \forall i)\xlongequal{\text{iid}}\left[P_{\theta_0}(x_1>k)\right]^n\\
&=\left[\int_k^\infty e^{-(x-\theta_0)}dx\right]^n=\left[e^{\theta_0}(-e^{-x}|_k^\infty)\right]^n\\
&=e^{n\theta_0-nk}\\
\implies k&=\theta_0-\frac{\ln \alpha}{n}
\end{align*} s.t. α ⟹ k = E θ 0 ϕ ( x ) = P θ 0 ( x ( 1 ) > k ) + r ⋅ P θ 0 ( x ( 1 ) = k ) = P θ 0 ( x i > k , ∀ i ) iid [ P θ 0 ( x 1 > k ) ] n = [ ∫ k ∞ e − ( x − θ 0 ) d x ] n = [ e θ 0 ( − e − x ∣ k ∞ ) ] n = e n θ 0 − nk = θ 0 − n ln α
因此 UMP level α \alpha α test 是:拒絕 H 0 H_0 H 0 if x ( 1 ) > θ 0 − ln α n x_{(1)}>\theta_0-\frac{\ln \alpha}{n} x ( 1 ) > θ 0 − n l n α
當假設檢定的對立假設是 H 1 : θ > θ 0 H_1:\theta>\theta_0 H 1 : θ > θ 0 或 H 1 : θ < θ 0 H_1:\theta<\theta_0 H 1 : θ < θ 0 時,稱為單邊(One-Sided)檢定。
而對立假設是 H 1 : θ ≠ θ 0 H_1:\theta\neq\theta_0 H 1 : θ = θ 0 或 H 1 : θ < θ 1 H_1:\theta<\theta_1 H 1 : θ < θ 1 or θ > θ 2 \theta>\theta_2 θ > θ 2 時,稱為雙邊(Two-Sided)檢定。
對於單邊檢定問題,如果有 MLR 性質,我們可以直接得到 UMP 檢定。並且拒絕 H 0 H_0 H 0 的範圍與 H 1 H_1 H 1 是“同方向”的。i.e.:
H 1 : θ > θ 0 H_1:\theta>\theta_0 H 1 : θ > θ 0 ,拒絕 H 0 H_0 H 0 if v ( T ) > k v(T)>k v ( T ) > k
H 1 : θ < θ 0 H_1:\theta<\theta_0 H 1 : θ < θ 0 ,拒絕 H 0 H_0 H 0 if v ( T ) < k v(T)<k v ( T ) < k
1-par exp family
如果 f ( x ~ ; θ ) ∈ f(\utilde{x};\theta)\in f ( x ; θ ) ∈ 1-par exp family,i.e. f ( x ~ ; θ ) = c ( θ ) exp ( Q ( θ ) T ( θ ~ ) ) h ( x ~ ) f(\utilde{x};\theta)=c(\theta)\exp(Q(\theta)T(\utilde{\theta}))h(\utilde{x}) f ( x ; θ ) = c ( θ ) exp ( Q ( θ ) T ( θ )) h ( x ) with X = { x ~ ; f ( x ~ ; θ ) > 0 } ⊥ θ \mathscr{X}=\set{\utilde{x};f(\utilde{x};\theta)>0}\perp\theta X = { x ; f ( x ; θ ) > 0 } ⊥ θ
⟹ ∀ θ 2 > θ 1 , f ( x ~ ; θ 2 ) f ( x ~ ; θ 1 ) = c ( θ 2 ) c ( θ 1 ) exp ( T ( x ~ ) ( Q ( θ 2 ) − Q ( θ 1 ) ) ) \implies \forall\theta_2>\theta_1, \frac{f(\utilde{x};\theta_2)}{f(\utilde{x};\theta_1)}=\frac{c(\theta_2)}{c(\theta_1)}\exp\left(T(\utilde{x})(Q(\theta_2)-Q(\theta_1))\right) ⟹ ∀ θ 2 > θ 1 , f ( x ; θ 1 ) f ( x ; θ 2 ) = c ( θ 1 ) c ( θ 2 ) exp ( T ( x ) ( Q ( θ 2 ) − Q ( θ 1 )) )
注意到,如果對於所有 θ 2 > θ 1 \theta_2>\theta_1 θ 2 > θ 1 都有 Q ( θ 2 ) − Q ( θ 1 ) > 0 Q(\theta_2)-Q(\theta_1)>0 Q ( θ 2 ) − Q ( θ 1 ) > 0 ,這代表 Q Q Q 是單調遞增的,反之亦然。因此:
如果 Q Q Q 遞增,那麼 f f f 在 T T T 下具有 MLR。
如果 Q Q Q 遞減,那麼 f f f 在 − T -T − T 下具有 MLR。
f ∈ f\in f ∈ 1-par exp family
Q Q Q 沿著 θ \theta θ 遞增 ⟹ \implies ⟹ f f f 在 T T T 下具有 MLR
H 0 : θ = ( ≤ ) θ 0 H_0:\theta\overset{(\le)}{=}\theta_0 H 0 : θ = ( ≤ ) θ 0 v.s. H 1 : θ > θ 0 H_1:\theta>\theta_0 H 1 : θ > θ 0 .
ϕ ( X ~ ) = { 1 if T ( X ~ ) > k r if T ( X ~ ) = k 0 if T ( X ~ ) < k \phi(\utilde{X})=\begin{cases}
1 & \text{if } T(\utilde{X})>k\\
r & \text{if } T(\utilde{X})=k\\
0 & \text{if } T(\utilde{X})<k
\end{cases} ϕ ( X ) = ⎩ ⎨ ⎧ 1 r 0 if T ( X ) > k if T ( X ) = k if T ( X ) < k
H 0 : θ = ( ≥ ) θ 0 H_0:\theta\overset{(\ge)}{=}\theta_0 H 0 : θ = ( ≥ ) θ 0 v.s. H 1 : θ < θ 0 H_1:\theta<\theta_0 H 1 : θ < θ 0 .
ϕ ( X ~ ) = { 1 if T ( X ~ ) < k r if T ( X ~ ) = k 0 if T ( X ~ ) > k \phi(\utilde{X})=\begin{cases}
1 & \text{if } T(\utilde{X})<k\\
r & \text{if } T(\utilde{X})=k\\
0 & \text{if } T(\utilde{X})>k
\end{cases} ϕ ( X ) = ⎩ ⎨ ⎧ 1 r 0 if T ( X ) < k if T ( X ) = k if T ( X ) > k
s.t. E θ 0 ϕ ( X ~ ) = α E_{\theta_0}\phi(\utilde{X})=\alpha E θ 0 ϕ ( X ) = α is UMP level α \alpha α test.
Q Q Q 沿著 θ \theta θ 遞減 ⟹ \implies ⟹ f f f 在 − T -T − T 下具有 MLR
H 0 : θ = ( ≤ ) θ 0 H_0:\theta\overset{(\le)}{=}\theta_0 H 0 : θ = ( ≤ ) θ 0 v.s. H 1 : θ > θ 0 H_1:\theta>\theta_0 H 1 : θ > θ 0 .
ϕ ( X ~ ) = { 1 if T ( X ~ ) < k r if T ( X ~ ) = k 0 if T ( X ~ ) > k \phi(\utilde{X})=\begin{cases}
1 & \text{if } T(\utilde{X})<k\\
r & \text{if } T(\utilde{X})=k\\
0 & \text{if } T(\utilde{X})>k
\end{cases} ϕ ( X ) = ⎩ ⎨ ⎧ 1 r 0 if T ( X ) < k if T ( X ) = k if T ( X ) > k
H 0 : θ = ( ≥ ) θ 0 H_0:\theta\overset{(\ge)}{=}\theta_0 H 0 : θ = ( ≥ ) θ 0 v.s. H 1 : θ < θ 0 H_1:\theta<\theta_0 H 1 : θ < θ 0 .
ϕ ( X ~ ) = { 1 if T ( X ~ ) > k r if T ( X ~ ) = k 0 if T ( X ~ ) < k \phi(\utilde{X})=\begin{cases}
1 & \text{if } T(\utilde{X})>k\\
r & \text{if } T(\utilde{X})=k\\
0 & \text{if } T(\utilde{X})<k
\end{cases} ϕ ( X ) = ⎩ ⎨ ⎧ 1 r 0 if T ( X ) > k if T ( X ) = k if T ( X ) < k
s.t. E θ 0 ϕ ( X ~ ) = α E_{\theta_0}\phi(\utilde{X})=\alpha E θ 0 ϕ ( X ) = α is UMP level α \alpha α test.
H 0 : θ ≤ θ 1 H_0:\theta\le\theta_1 H 0 : θ ≤ θ 1 or θ ≥ θ 2 \theta\ge\theta_2 θ ≥ θ 2 v.s. H 1 : θ 1 < θ < θ 2 H_1:\theta_1<\theta<\theta_2 H 1 : θ 1 < θ < θ 2
UMP level α \alpha α test is
ϕ ( t ) = { 1 if k 1 < t < k 2 r 1 if t = k 1 r 2 if t = k 2 0 if t < k 1 or t > k 2 \phi(t)=\begin{cases}
1 & \text{if } k_1<t<k_2\\
r_1 & \text{if } t=k_1\\
r_2 & \text{if } t=k_2\\
0 & \text{if } t<k_1\text{ or } t>k_2
\end{cases} ϕ ( t ) = ⎩ ⎨ ⎧ 1 r 1 r 2 0 if k 1 < t < k 2 if t = k 1 if t = k 2 if t < k 1 or t > k 2
s.t. E θ i ϕ ( T ) = α E_{\theta_i}\phi(T)=\alpha E θ i ϕ ( T ) = α
EX : X 1 , ⋯ , X n ∼ iid B ( 1 , θ ) X_1,\cdots, X_n\overset{\text{iid}}{\sim}B(1, \theta) X 1 , ⋯ , X n ∼ iid B ( 1 , θ )
⟹ f ( x ~ ; θ ) = ∏ i = 1 n θ x i ( 1 − θ ) 1 − x i = θ t ( 1 − θ ) n − t with t = ∑ x i = ( 1 − θ ) n ( θ 1 − θ ) t = c ( θ ) exp ( t ln θ 1 − θ ) ∈ 1-par exp family with Q ( θ ) = ln θ 1 − θ Q ′ ( θ ) = 1 θ + 1 1 − θ > 0 \begin{align*}
\implies f(\utilde{x};\theta)&=\prod_{i=1}^n\theta^{x_i}(1-\theta)^{1-x_i}\\
&=\theta^t(1-\theta)^{n-t}\quad \text{with } t=\sum x_i\\
&=(1-\theta)^n\left(\frac{\theta}{1-\theta}\right)^t\\
&=c(\theta)\exp\left(t\ln\frac{\theta}{1-\theta}\right)\in \text{ 1-par exp family}\\
\text{with }Q(\theta)&=\ln\frac{\theta}{1-\theta}\quad Q'(\theta)=\frac{1}{\theta}+\frac{1}{1-\theta}>0
\end{align*} ⟹ f ( x ; θ ) with Q ( θ ) = i = 1 ∏ n θ x i ( 1 − θ ) 1 − x i = θ t ( 1 − θ ) n − t with t = ∑ x i = ( 1 − θ ) n ( 1 − θ θ ) t = c ( θ ) exp ( t ln 1 − θ θ ) ∈ 1-par exp family = ln 1 − θ θ Q ′ ( θ ) = θ 1 + 1 − θ 1 > 0
因此 f f f 在 T = ∑ X i T=\sum X_i T = ∑ X i 下具有 MLR。對於檢定:
H 0 : θ ≤ ( = ) θ 0 v.s. H 1 : θ > θ 0 H_0:\theta\overset{(=)}{\le}\theta_0\text{ v.s. }H_1:\theta>\theta_0 H 0 : θ ≤ ( = ) θ 0 v.s. H 1 : θ > θ 0
UMP level α \alpha α test 是:
ϕ ( t ) = { 1 if t > k r if t = k 0 if t < k \phi(t)=\begin{cases}
1 & \text{if } t>k\\
r & \text{if } t=k\\
0 & \text{if } t<k
\end{cases} ϕ ( t ) = ⎩ ⎨ ⎧ 1 r 0 if t > k if t = k if t < k
with α = E θ 0 ϕ ( T ) = P θ 0 ( T > k ) + r ⋅ P θ 0 ( T = k ) \text{ with } \alpha=E_{\theta_0}\phi(T)=P_{\theta_0}(T>k)+r\cdot P_{\theta_0}(T=k) with α = E θ 0 ϕ ( T ) = P θ 0 ( T > k ) + r ⋅ P θ 0 ( T = k )
在樣本數比較大的情況下,我們難以計算 P θ 0 ( T > k ) P_{\theta_0}(T>k) P θ 0 ( T > k ) 。我們可以用中央極限定理來近似到標準常態分佈,這樣就可以查表得到 k k k 。
α = P θ 0 ( T > k ) + r ⋅ P θ 0 ( T = k ) = P ( T − n θ 0 n θ 0 ( 1 − θ 0 ) > k − n θ 0 n θ 0 ( 1 − θ 0 ) ) + r ⋅ P ( T − n θ 0 n θ 0 ( 1 − θ 0 ) = k − n θ 0 n θ 0 ( 1 − θ 0 ) ) ⏟ 連續分佈的單點幾率為0 ≈ P ( Z > k − n θ 0 n θ 0 ( 1 − θ 0 ) ) ⟹ k − n θ 0 n θ 0 ( 1 − θ 0 ) = Z α ⟹ k = n θ 0 + Z α n θ 0 ( 1 − θ 0 ) \begin{align*}
\alpha&=P_{\theta_0}(T>k)+r\cdot P_{\theta_0}(T=k)\\
&=P\left(\frac{T-n\theta_0}{\sqrt{n\theta_0(1-\theta_0)}}>\frac{k-n\theta_0}{\sqrt{n\theta_0(1-\theta_0)}}\right)+r\cdot \underbrace{P\left(\frac{T-n\theta_0}{\sqrt{n\theta_0(1-\theta_0)}}=\frac{k-n\theta_0}{\sqrt{n\theta_0(1-\theta_0)}}\right)}_{\text{連續分佈的單點幾率為0}}\\
&\approx P(Z>\frac{k-n\theta_0}{\sqrt{n\theta_0(1-\theta_0)}})\\
&\implies \frac{k-n\theta_0}{\sqrt{n\theta_0(1-\theta_0)}}=Z_\alpha\\
&\implies k=n\theta_0+Z_\alpha\sqrt{n\theta_0(1-\theta_0)}
\end{align*} α = P θ 0 ( T > k ) + r ⋅ P θ 0 ( T = k ) = P ( n θ 0 ( 1 − θ 0 ) T − n θ 0 > n θ 0 ( 1 − θ 0 ) k − n θ 0 ) + r ⋅ 連續分佈的單點幾率為 0 P ( n θ 0 ( 1 − θ 0 ) T − n θ 0 = n θ 0 ( 1 − θ 0 ) k − n θ 0 ) ≈ P ( Z > n θ 0 ( 1 − θ 0 ) k − n θ 0 ) ⟹ n θ 0 ( 1 − θ 0 ) k − n θ 0 = Z α ⟹ k = n θ 0 + Z α n θ 0 ( 1 − θ 0 )
假設 n = 25 , θ 0 = 0.5 , α = 0.01 n=25, \theta_0=0.5, \alpha=0.01 n = 25 , θ 0 = 0.5 , α = 0.01
k = 25 ⋯ 1 2 + Z 0.01 25 ⋅ 1 2 ⋅ 1 2 ≈ 25 ⋅ 1 2 + 2.33 ≈ 18.3 k=25\cdots\frac{1}{2}+Z_{0.01}\sqrt{25\cdot\frac{1}{2}\cdot\frac{1}{2}}\approx 25\cdot\frac{1}{2}+2.33\approx 18.3 k = 25 ⋯ 2 1 + Z 0.01 25 ⋅ 2 1 ⋅ 2 1 ≈ 25 ⋅ 2 1 + 2.33 ≈ 18.3
⟹ ϕ ( t ) = { 1 if t > 18.3 0 if t < 18.3 = { 1 if t = 19 , 20 , ⋯ , 25 0 o.w. \implies \phi(t)=\begin{cases}
1 & \text{if } t>18.3\\
0 & \text{if } t<18.3
\end{cases}=\begin{cases}
1 & \text{if } t=19, 20, \cdots, 25\\
0 & \text{o.w.}
\end{cases} ⟹ ϕ ( t ) = { 1 0 if t > 18.3 if t < 18.3 = { 1 0 if t = 19 , 20 , ⋯ , 25 o.w.
雙邊問題(Two-Sided Problem)
H 0 : θ = θ 0 v.s. H 1 : θ ≠ θ 0 H_0:\theta=\theta_0\text{ v.s. }H_1:\theta\neq\theta_0 H 0 : θ = θ 0 v.s. H 1 : θ = θ 0
or
H 0 : θ 1 ≤ θ ≤ θ 2 v.s. H 1 : θ < θ 1 or θ > θ 2 H_0:\theta_1\le\theta_\le\theta_2 \text{ v.s. }H_1:\theta<\theta_1\text{ or }\theta>\theta_2 H 0 : θ 1 ≤ θ ≤ θ 2 v.s. H 1 : θ < θ 1 or θ > θ 2
對於雙邊問題,UMP 檢定通常 不存在(反例:U ( 0 , θ ) U(0, \theta) U ( 0 , θ ) )
EX : For 1-par exp family
f ( x ~ θ ) = c ( θ ) exp ( Q ( θ ) T ( x ~ ) ) h ( x ~ ) with Q ( θ ) ↗ in θ f(\utilde{x}\theta)=c(\theta)\exp(Q(\theta)T(\utilde{x}))h(\utilde{x})\quad\text{ with } Q(\theta)\nearrow \text{ in }\theta f ( x θ ) = c ( θ ) exp ( Q ( θ ) T ( x )) h ( x ) with Q ( θ ) ↗ in θ
⟹ \implies ⟹ UMP level α \alpha α test for H 0 : θ = θ 0 H_0:\theta=\theta_0 H 0 : θ = θ 0 v.s. H 1 : θ > θ 0 H_1:\theta>\theta_0 H 1 : θ > θ 0 is: reject H 0 H_0 H 0 if T > k 1 T>k_1 T > k 1 with E θ 0 ϕ 1 ( T ) = α E_{\theta_0}\phi_1(T)=\alpha E θ 0 ϕ 1 ( T ) = α
UMP level α \alpha α test for H 0 : θ = θ 0 H_0:\theta=\theta_0 H 0 : θ = θ 0 v.s. H 1 : θ < θ 0 H_1:\theta<\theta_0 H 1 : θ < θ 0 is: reject H 0 H_0 H 0 if T < k 2 T<k_2 T < k 2 with E θ 0 ϕ 2 ( T ) = α E_{\theta_0}\phi_2(T)=\alpha E θ 0 ϕ 2 ( T ) = α
⟹ \implies ⟹ UMP level α \alpha α test for H 0 : θ = θ 0 H_0:\theta=\theta_0 H 0 : θ = θ 0 v.s. H 1 θ ≠ θ 0 H_1\theta\neq\theta_0 H 1 θ = θ 0 does not exist .
Idea : 假設 UMP test 存在,令 ϕ ∗ \phi^* ϕ ∗ 是 UMP test,並且 E θ 0 ϕ ∗ = α E_{\theta_0}\phi^*=\alpha E θ 0 ϕ ∗ = α
因為是 UMP test,那麼 ϕ ∗ \phi^* ϕ ∗ 的 power 應該比其他任何 α \alpha α test 都大,i.e. ∀ ϕ \forall \phi ∀ ϕ with E θ 0 ϕ = α E_{\theta_0}\phi=\alpha E θ 0 ϕ = α ,有 E θ ϕ ∗ ≥ E θ ϕ , ∀ θ ≠ θ 0 E_{\theta}\phi^*\ge E_{\theta}\phi, \forall\theta\neq\theta_0 E θ ϕ ∗ ≥ E θ ϕ , ∀ θ = θ 0 。
H 1 H_1 H 1 所假設的範圍可以拆成 θ > θ 0 \theta>\theta_0 θ > θ 0 和 θ < θ 0 \theta<\theta_0 θ < θ 0 。因為 ϕ ∗ \phi^* ϕ ∗ 是 UMP test,那麼對於這兩個範圍的檢定,ϕ ∗ \phi^* ϕ ∗ 也應該是 UMP test。
這兩個範圍的 UMP test 分別是 ϕ 1 \phi_1 ϕ 1 和 ϕ 2 \phi_2 ϕ 2 。而 UMP test 通常 是唯一的,因此 ϕ ∗ = ϕ 1 = ϕ 2 \phi^*=\phi_1=\phi_2 ϕ ∗ = ϕ 1 = ϕ 2 。
但 ϕ 1 ≠ ϕ 2 \phi_1\neq\phi_2 ϕ 1 = ϕ 2 是矛盾的,因此 UMP test 不存在。
EX X 1 , ⋯ , X n ∼ iid U ( 0 , θ ) X_1,\cdots,X_n\overset{\text{iid}}{\sim}U(0,\theta) X 1 , ⋯ , X n ∼ iid U ( 0 , θ )
UMP level α \alpha α test for H 0 : θ = θ 0 H_0:\theta=\theta_0 H 0 : θ = θ 0 v.s. H 1 : θ ≠ θ 0 H_1:\theta\neq\theta_0 H 1 : θ = θ 0 exists and is given
UMP level α \alpha α test for H 0 : θ = θ 0 H_0:\theta=\theta_0 H 0 : θ = θ 0 v.s. H 1 : θ > θ 0 H_1:\theta>\theta_0 H 1 : θ > θ 0 is
ϕ 1 ( X ( n ) ) = { 1 if x ( n ) > k 1 0 o.w. with α = P θ 0 ( X ( n ) > k 1 ) = 1 − P θ 0 ( X ( n ) ≤ k 1 ) = 1 − ( k 1 θ 0 ) n \phi_1(X_{(n)})=\begin{cases}
1 & \text{if } x_{(n)}>k_1\\
0 & \text{o.w.}
\end{cases} \quad \text{with } \begin{align*}
\alpha&=P_{\theta_0}(X_{(n)}>k_1)\\
&=1-P_{\theta_0}(X_{(n)}\le k_1)\\
&=1-\left(\frac{k_1}{\theta_0}\right)^n
\end{align*} ϕ 1 ( X ( n ) ) = { 1 0 if x ( n ) > k 1 o.w. with α = P θ 0 ( X ( n ) > k 1 ) = 1 − P θ 0 ( X ( n ) ≤ k 1 ) = 1 − ( θ 0 k 1 ) n
⟹ k 1 = θ 0 ( 1 − α ) 1 / n \implies k_1=\theta_0(1-\alpha)^{1/n} ⟹ k 1 = θ 0 ( 1 − α ) 1/ n
and its power, ∀ θ > θ 0 \forall\theta>\theta_0 ∀ θ > θ 0
E θ ϕ i ( X ( n ) ) = P θ ( X ( n ) > θ 0 ( 1 − α ) 1 / n ) = 1 − P θ ( X ( n ) ≤ θ 0 ( 1 − α ) 1 / n ) = 1 − ( θ 0 ( 1 − α ) 1 / n θ ) n = 1 − ( θ 0 θ ) n ( 1 − α ) ∀ θ > θ 0 ≥ E θ ϕ ( X ( n ) ) ∀ ϕ with E θ 0 ϕ = α \begin{align*}
E_\theta\phi_i(X_{(n)})&=P_\theta(X_{(n)}>\theta_0(1-\alpha)^{1/n})\\
&=1-P_\theta(X_{(n)}\le\theta_0(1-\alpha)^{1/n})\\
&=1-\left(\frac{\theta_0(1-\alpha)^{1/n}}{\theta}\right)^n\\
&=1-\left(\frac{\theta_0}{\theta}\right)^n(1-\alpha)\quad\forall\theta>\theta_0\\
&\ge E_\theta\phi(X_{(n)})\quad\forall\phi\text{ with }E_{\theta_0}\phi=\alpha
\end{align*} E θ ϕ i ( X ( n ) ) = P θ ( X ( n ) > θ 0 ( 1 − α ) 1/ n ) = 1 − P θ ( X ( n ) ≤ θ 0 ( 1 − α ) 1/ n ) = 1 − ( θ θ 0 ( 1 − α ) 1/ n ) n = 1 − ( θ θ 0 ) n ( 1 − α ) ∀ θ > θ 0 ≥ E θ ϕ ( X ( n ) ) ∀ ϕ with E θ 0 ϕ = α
UMP level α \alpha α test H 0 : θ = θ 0 H_0:\theta=\theta_0 H 0 : θ = θ 0 v.s. H 1 : θ < θ 0 H_1: \theta<\theta_0 H 1 : θ < θ 0 is
ϕ 2 ( X ( n ) ) = { 1 if x ( n ) < k 2 0 o.w. with α = E θ 0 ϕ 2 ( X ( n ) ) = P θ 0 ( X ( n ) < k 2 ) = ( k 2 θ 0 ) n \phi_2(X_{(n)})=\begin{cases}
1 & \text{if } x_{(n)}<k_2\\
0 & \text{o.w.}
\end{cases} \quad\text{with }\begin{align*}
\alpha&=E_{\theta_0}\phi_2(X_{(n)})\\
&=P_{\theta_0}(X_{(n)}<k_2)\\
&=\left(\frac{k_2}{\theta_0}\right)^n
\end{align*} ϕ 2 ( X ( n ) ) = { 1 0 if x ( n ) < k 2 o.w. with α = E θ 0 ϕ 2 ( X ( n ) ) = P θ 0 ( X ( n ) < k 2 ) = ( θ 0 k 2 ) n
⟹ k 2 = θ 0 α 1 / n \implies k_2=\theta_0\alpha^{1/n} ⟹ k 2 = θ 0 α 1/ n
with power, ∀ θ < θ 0 \forall\theta<\theta_0 ∀ θ < θ 0
E θ ϕ 2 ( X ( n ) ) = P θ ( X ( n ) < θ 0 α 1 / n ) = { 1 if θ ≤ θ 0 α 1 / n ( θ 0 θ ) n α if θ > θ 0 α 1 / n ≥ E θ ϕ ( X ( n ) ) ∀ ϕ with E θ 0 ϕ = α \begin{align*}
E_\theta\phi_2(X_{(n)})&=P_\theta(X_{(n)}<\theta_0\alpha^{1/n})\\
&=\begin{cases}
1&\text{if }\theta\le\theta_0\alpha^{1/n}\\
\left(\frac{\theta_0}{\theta}\right)^n\alpha&\text{if }\theta>\theta_0\alpha^{1/n}
\end{cases}\\
&\ge E_\theta\phi(X_{(n)})\quad\forall\phi\text{ with }E_{\theta_0}\phi=\alpha
\end{align*} E θ ϕ 2 ( X ( n ) ) = P θ ( X ( n ) < θ 0 α 1/ n ) = { 1 ( θ θ 0 ) n α if θ ≤ θ 0 α 1/ n if θ > θ 0 α 1/ n ≥ E θ ϕ ( X ( n ) ) ∀ ϕ with E θ 0 ϕ = α
UMP level α \alpha α test for H 0 : θ 1 ≤ θ ≤ θ 2 H_0:\theta_1\le\theta\le\theta_2 H 0 : θ 1 ≤ θ ≤ θ 2 v.s. H 1 : θ ≠ θ 2 H_1:\theta\neq\theta_2 H 1 : θ = θ 2 is
ϕ ( X ( n ) ) = { 1 if x ( n ) > θ 0 or x ( n ) < θ 0 α 1 / n 0 o.w. \phi(X_{(n)})=\begin{cases}
1 & \text{if } x_{(n)}>\theta_0\text{ or } x_{(n)}<\theta_0\alpha^{1/n}\\
0 & \text{o.w.}
\end{cases} ϕ ( X ( n ) ) = { 1 0 if x ( n ) > θ 0 or x ( n ) < θ 0 α 1/ n o.w.
⟹ E θ 0 ϕ ( X ( n ) ) = P θ 0 ( X ( n ) > θ 0 ) ⏟ = 0 + P θ 0 ( X ( n ) < θ 0 α 1 / n ) = ( θ 0 α 1 / n θ 0 ) n = α \implies E_{\theta_0}\phi(X_{(n)})=\underbrace{P_{\theta_0}(X_{(n)}>\theta_0)}_{=0}+P_{\theta_0}(X_{(n)}<\theta_0\alpha^{1/n})=\left(\frac{\theta_0\alpha^{1/n}}{\theta_0}\right)^n=\alpha ⟹ E θ 0 ϕ ( X ( n ) ) = = 0 P θ 0 ( X ( n ) > θ 0 ) + P θ 0 ( X ( n ) < θ 0 α 1/ n ) = ( θ 0 θ 0 α 1/ n ) n = α
and its power
E θ ϕ ( X ( n ) ) = P θ ( X ( n ) > θ 0 ) + P θ ( X ( n ) < θ 0 α 1 / n ) = { 1 − ( θ 0 θ ) n if θ > θ 0 E θ ϕ 2 ( X ( n ) ) if θ < θ 0 α 1 / n ≥ E θ ϕ ( X ( n ) ) ∀ ϕ with E θ 0 ϕ = α \begin{align*}
E_\theta\phi(X_{(n)})&=P_\theta(X_{(n)}>\theta_0)+P_\theta(X_{(n)}<\theta_0\alpha^{1/n})\\
&=\begin{cases}
1-\left(\frac{\theta_0}{\theta} \right)^n&\text{if }\theta>\theta_0\\
E_\theta\phi_2(X_{(n)})&\text{if }\theta<\theta_0\alpha^{1/n}
\end{cases}\\
&\ge E_\theta\phi(X_{(n)})\quad\forall\phi\text{ with }E_{\theta_0}\phi=\alpha
\end{align*} E θ ϕ ( X ( n ) ) = P θ ( X ( n ) > θ 0 ) + P θ ( X ( n ) < θ 0 α 1/ n ) = { 1 − ( θ θ 0 ) n E θ ϕ 2 ( X ( n ) ) if θ > θ 0 if θ < θ 0 α 1/ n ≥ E θ ϕ ( X ( n ) ) ∀ ϕ with E θ 0 ϕ = α
EX :
UMPU Test
A level α \alpha α test ϕ \phi ϕ for H 0 : θ ∈ ω 0 H_0:\theta\in\omega_0 H 0 : θ ∈ ω 0 v.s. H 1 : θ ∈ ω 1 H_1:\theta\in\omega_1 H 1 : θ ∈ ω 1 is said to be unbiased if
E θ ϕ ( x ~ ) ≥ α ∀ θ ∈ ω 1 E_\theta\phi(\utilde{x})\ge\alpha\quad\forall\theta\in\omega_1 E θ ϕ ( x ) ≥ α ∀ θ ∈ ω 1
ϕ ∗ \phi^* ϕ ∗ is UMPU levet α \alpha α test ⟺ ϕ ∗ \iff\phi^* ⟺ ϕ ∗ is UMP level α \alpha α test among unbiased test
我們可以找一個一定無偏的 test ϕ α = α \phi_\alpha=\alpha ϕ α = α ,使得 E θ [ ϕ α ] = α , ∀ θ E_\theta[\phi_\alpha]=\alpha, \forall\theta E θ [ ϕ α ] = α , ∀ θ 。因為 UMP test ϕ ∗ \phi^* ϕ ∗ 的 power 比任何 α \alpha α test 都大,i.e. ∀ θ ∈ ω 1 , E θ [ ϕ ∗ ] ≥ E θ [ ϕ α ] = α \forall\theta\in\omega_1, E_\theta[\phi^*]\ge E_\theta[\phi_\alpha]=\alpha ∀ θ ∈ ω 1 , E θ [ ϕ ∗ ] ≥ E θ [ ϕ α ] = α 。因此 UMP test 一定是 UMPU test。
而在單邊問題下,如果有 MLR,那麼我們可以直接得到 UMP test,也就是 UMPU test。所以 UMPU 的理論結果只討論在雙邊問題下。
Let T = T ( X ~ ) T=T(\utilde{X}) T = T ( X ) be sufficient for η ∈ R \eta\in\R η ∈ R with p.d.f. g ( t ; η ) = c ( η ) exp ( η ⋅ t ) h ( t ) ∈ g(t;\eta)=c(\eta)\exp(\eta\cdot t)h(t)\in g ( t ; η ) = c ( η ) exp ( η ⋅ t ) h ( t ) ∈ 1-par exp family.
H 0 : η = η 0 H_0:\eta=\eta_0 H 0 : η = η 0 v.s. H 1 : η ≠ η 0 H_1:\eta\neq\eta_0 H 1 : η = η 0
UMPU level α \alpha α test exists and is given
ϕ 1 ( T ) = { 1 if t > k 1 or t < k 2 r i if t = k i , i = 1 , 2 , ⋯ 0 o.w. with k 1 > k 2 , r i ∈ [ 0 , 1 ] , i = 1 , 2 , ⋯ \phi_1(T)=\begin{cases}
1 & \text{if } t>k_1\text{ or } t<k_2\\
r_i & \text{if } t=k_i, i=1,2,\cdots\\
0 & \text{o.w.}
\end{cases}\quad \text{with} k_1>k_2, r_i\in[0,1],i=1,2,\cdots ϕ 1 ( T ) = ⎩ ⎨ ⎧ 1 r i 0 if t > k 1 or t < k 2 if t = k i , i = 1 , 2 , ⋯ o.w. with k 1 > k 2 , r i ∈ [ 0 , 1 ] , i = 1 , 2 , ⋯
s.t. E η 0 ϕ ( T ) = α E_{\eta_0}\phi(T)=\alpha E η 0 ϕ ( T ) = α and E η 0 [ T ϕ ( T ) ] = α E η 0 [ T ] E_{\eta_0}[T\phi(T)]=\alpha E_{\eta_0}[T] E η 0 [ Tϕ ( T )] = α E η 0 [ T ] (E η 0 ϕ ( T ) E_{\eta_0}\phi(T) E η 0 ϕ ( T ) 在 η 0 \eta_0 η 0 時有最小值)。
H 0 : η 1 ≤ η ≤ η 2 H_0:\eta_1\le\eta\le\eta_2 H 0 : η 1 ≤ η ≤ η 2 v.s. H 1 : η < η 1 H_1:\eta<\eta_1 H 1 : η < η 1 or η > η 2 \eta>\eta_2 η > η 2
UMPU level α \alpha α test exists and is given
ϕ 2 ( T ) = { 1 if t > k 1 or t < k 2 r i if t = k i , i = 1 , 2 , ⋯ 0 o.w. with k 1 > k 2 , r i ∈ [ 0 , 1 ] , i = 1 , 2 , ⋯ \phi_2(T)=\begin{cases}
1 & \text{if } t>k_1\text{ or } t<k_2\\
r_i & \text{if } t=k_i, i=1,2,\cdots\\
0 & \text{o.w.}
\end{cases}\quad \text{with} k_1>k_2, r_i\in[0,1],i=1,2,\cdots ϕ 2 ( T ) = ⎩ ⎨ ⎧ 1 r i 0 if t > k 1 or t < k 2 if t = k i , i = 1 , 2 , ⋯ o.w. with k 1 > k 2 , r i ∈ [ 0 , 1 ] , i = 1 , 2 , ⋯
s.t. E η 1 ϕ ( T ) = α E_{\eta_1}\phi(T)=\alpha E η 1 ϕ ( T ) = α and E η 1 ϕ 2 ( T ) = α = E η 2 ϕ 2 ( T ) E_{\eta_1}\phi_2(T)=\alpha=E_{\eta_2}\phi_2(T) E η 1 ϕ 2 ( T ) = α = E η 2 ϕ 2 ( T )
EX : X 1 , ⋯ , X n ∼ iid N ( θ , σ 0 2 ) X_1, \cdots, X_n\overset{\text{iid}}{\sim}N(\theta ,\sigma^2_0) X 1 , ⋯ , X n ∼ iid N ( θ , σ 0 2 ) with σ 0 2 \sigma^2_0 σ 0 2 known ⟹ T = X ˉ ∼ N ( θ , τ 2 ) \implies T=\bar{X}\sim N(\theta, \tau^2) ⟹ T = X ˉ ∼ N ( θ , τ 2 ) where τ 2 = σ 0 2 / n \tau^2=\sigma^2_0/n τ 2 = σ 0 2 / n .i.e.
g ( t ; θ ) = 1 2 π τ 2 exp ( − ( t − θ ) 2 2 τ 2 ) = 1 2 π τ exp ( − t 2 2 τ 2 ) ⏟ h ( t ) exp ( θ τ 2 ⏟ η ⋅ t ) exp ( − θ 2 2 τ 2 ) = g ( t ; η ) \begin{align*}
g(t;\theta)&=\frac{1}{\sqrt{2\pi\tau^2}}\exp\left(-\frac{(t-\theta)^2}{2\tau^2}\right)\\
&=\underbrace{\frac{1}{\sqrt{2\pi}\tau}\exp\left(-\frac{t^2}{2\tau^2}\right)}_{h(t)}\exp\left(\underbrace{\frac{\theta}{\tau^2}}_{\eta}\cdot t\right)\exp\left(-\frac{\theta^2}{2\tau^2}\right)\\
&=g(t;\eta)
\end{align*} g ( t ; θ ) = 2 π τ 2 1 exp ( − 2 τ 2 ( t − θ ) 2 ) = h ( t ) 2 π τ 1 exp ( − 2 τ 2 t 2 ) exp η τ 2 θ ⋅ t exp ( − 2 τ 2 θ 2 ) = g ( t ; η )
Note τ 2 \tau^2 τ 2 is known, η = θ τ 2 , η 0 = θ 0 τ 2 \eta=\frac{\theta}{\tau^2}, \eta_0=\frac{\theta_0}{\tau^2} η = τ 2 θ , η 0 = τ 2 θ 0
⟹ H 0 : θ = θ 0 ⟺ H 0 : θ τ 2 = θ 0 τ 2 ⟺ H 0 : η = η 0 \implies H_0:\theta=\theta_0\iff H_0:\frac{\theta}{\tau^2}=\frac{\theta_0}{\tau^2}\iff H_0:\eta=\eta_0 ⟹ H 0 : θ = θ 0 ⟺ H 0 : τ 2 θ = τ 2 θ 0 ⟺ H 0 : η = η 0
For testing H 0 : θ = θ 0 H_0:\theta=\theta_0 H 0 : θ = θ 0 v.s. H 1 : θ ≠ θ 0 H_1:\theta\neq\theta_0 H 1 : θ = θ 0 , UMPU level α \alpha α test is
ϕ ( t ) = { 1 if t > k 1 or t < k 2 ( k 1 < k 2 ) r i if t = k i , i = 1 , 2 , ⋯ 0 o.w. \phi(t)=\begin{cases}
1 & \text{if } t>k_1\text{ or } t<k_2\quad(k_1<k_2)\\
r_i & \text{if } t=k_i, i=1,2,\cdots\\
0 & \text{o.w.}
\end{cases} ϕ ( t ) = ⎩ ⎨ ⎧ 1 r i 0 if t > k 1 or t < k 2 ( k 1 < k 2 ) if t = k i , i = 1 , 2 , ⋯ o.w.
with α = E η 0 ϕ ( T ) = E θ 0 ϕ ( T ) = P θ 0 ( T < k 1 ) + P θ 0 ( T > k 2 ) 單點機率為0 = P ( Z < k 1 − θ 0 τ ) + P ( Z > k 2 − θ 0 τ ) \begin{align*}
\text{with }\alpha&=E_{\eta_0}\phi(T)=E_{\theta_0}\phi(T)\\
&=P_{\theta_0}(T<k_1)+P_{\theta_0}(T>k_2)\quad\text{單點機率為0}\\
&=P(Z<\frac{k_1-\theta_0}{\tau})+P(Z>\frac{k_2-\theta_0}{\tau})\\
\end{align*} with α = E η 0 ϕ ( T ) = E θ 0 ϕ ( T ) = P θ 0 ( T < k 1 ) + P θ 0 ( T > k 2 ) 單點機率為 0 = P ( Z < τ k 1 − θ 0 ) + P ( Z > τ k 2 − θ 0 )
⟹ k 1 = θ 0 − σ 0 n Z α / 2 k 2 = θ 0 + σ 0 n Z α / 2 \implies k_1=\theta_0-\frac{\sigma_0}{\sqrt{n}}Z_{\alpha/2}\quad k_2=\theta_0+\frac{\sigma_0}{\sqrt{n}} Z_{\alpha/2} ⟹ k 1 = θ 0 − n σ 0 Z α /2 k 2 = θ 0 + n σ 0 Z α /2
i.e. ϕ ( t ) = { 1 if t > θ 0 + σ 0 n Z α / 2 or t < θ 0 − σ 0 n Z α / 2 0 o.w. = { 1 if ∣ n ( X ˉ − θ 0 ) σ 0 ∣ > Z α / 2 0 o.w. = I ( ∣ n ( X ˉ − θ 0 ) σ 0 ∣ > Z α / 2 ) \begin{align*}
\text{i.e. }\phi(t)&=\begin{cases}
1 & \text{if } t>\theta_0+\frac{\sigma_0}{\sqrt{n}}Z_{\alpha/2}\text{ or } t<\theta_0-\frac{\sigma_0}{\sqrt{n}}Z_{\alpha/2}\\
0 & \text{o.w.}
\end{cases}\\
&=\begin{cases}
1&\text{if } \left|\frac{\sqrt{n}(\bar{X}-\theta_0)}{\sigma_0}\right|>Z_{\alpha/2}\\
0&\text{o.w.}
\end{cases}\\
&=I\left(\left|\frac{\sqrt{n}(\bar{X}-\theta_0)}{\sigma_0}\right|>Z_{\alpha/2}\right)
\end{align*} i.e. ϕ ( t ) = { 1 0 if t > θ 0 + n σ 0 Z α /2 or t < θ 0 − n σ 0 Z α /2 o.w. = { 1 0 if σ 0 n ( X ˉ − θ 0 ) > Z α /2 o.w. = I ( σ 0 n ( X ˉ − θ 0 ) > Z α /2 )
and
E η 0 [ T ϕ ( T ) ] = E θ 0 [ T ⋅ I ( ∣ n ( X ˉ − θ 0 ) σ 0 ∣ > Z α / 2 ) ] T ∼ N ( θ 0 , σ 0 2 n ) = E θ 0 [ ( θ 0 + σ 0 2 n Z ) I ( ∣ Z ∣ > Z α / 2 ) ] = θ 0 E θ 0 [ I ( ∣ Z ∣ > Z α / 2 ) ] + σ 0 n E θ 0 [ Z ⋅ I ( ∣ Z ∣ > Z α / 2 ) ] = θ 0 α + 0 \begin{align*}
E_{\eta_0}[T\phi(T)]&=E_{\theta_0}\left[T\cdot I\left(\left|\frac{\sqrt{n}(\bar{X}-\theta_0)}{\sigma_0}\right|>Z_{\alpha/2}\right)\right]\quad T\sim N(\theta_0, \frac{\sigma^2_0}{n})\\
&=E_{\theta_0}\left[(\theta_0+\frac{\sigma^2_0}{\sqrt{n}}Z)I(|Z|>Z_{\alpha/2})\right]\\
&=\theta_0E_{\theta_0}\left[I(|Z|>Z_{\alpha/2})\right]+\frac{\sigma_0}{\sqrt{n}}E_{\theta_0}\left[Z\cdot I(|Z|>Z_{\alpha/2})\right]\\
&=\theta_0\alpha+0
\end{align*} E η 0 [ Tϕ ( T )] = E θ 0 [ T ⋅ I ( σ 0 n ( X ˉ − θ 0 ) > Z α /2 ) ] T ∼ N ( θ 0 , n σ 0 2 ) = E θ 0 [ ( θ 0 + n σ 0 2 Z ) I ( ∣ Z ∣ > Z α /2 ) ] = θ 0 E θ 0 [ I ( ∣ Z ∣ > Z α /2 ) ] + n σ 0 E θ 0 [ Z ⋅ I ( ∣ Z ∣ > Z α /2 ) ] = θ 0 α + 0
∵ E [ Z ⋅ I ( ∣ Z ∣ > Z α / 2 ) ] = ∫ ∣ Z ∣ > Z α / 2 z ⋅ 1 2 π e − z 2 / 2 d z = ∫ Z α / 2 ∞ z 2 π e − z 2 / 2 d z + ∫ − ∞ − Z α / 2 z 2 π e − z 2 / 2 d z = 0 ∵ odd function \begin{align*}
\because E[Z\cdot I(|Z|>Z_{\alpha/2})]&=\int_{|Z|>Z_{\alpha/2}}z\cdot\frac{1}{\sqrt{2\pi}}e^{-z^2/2}dz\\
&=\int_{Z_{\alpha/2}}^\infty \frac{z}{\sqrt{2\pi}}e^{-z^2/2}dz+\int_{-\infty}^{-Z_{\alpha/2}}\frac{z}{\sqrt{2\pi}}e^{-z^2/2}dz\\
&=0 \quad\because \text{odd function}
\end{align*} ∵ E [ Z ⋅ I ( ∣ Z ∣ > Z α /2 )] = ∫ ∣ Z ∣ > Z α /2 z ⋅ 2 π 1 e − z 2 /2 d z = ∫ Z α /2 ∞ 2 π z e − z 2 /2 d z + ∫ − ∞ − Z α /2 2 π z e − z 2 /2 d z = 0 ∵ odd function
Remark :
g ( t ; θ ) = c ( θ ) exp ( Q ( θ ) ⋅ t ) h ( t ) ⇒ θ = Q − 1 ( η ) η = Q ( θ ) c 0 ( η ) exp ( η ⋅ t ) h ( t ) = g ( t ; η ) g(t;\theta)=c(\theta)\exp(Q(\theta)\cdot t)h(t)\xRightarrow[\theta=Q^{-1}(\eta)]{\eta=Q(\theta)}c_0(\eta)\exp(\eta\cdot t)h(t)=g(t;\eta) g ( t ; θ ) = c ( θ ) exp ( Q ( θ ) ⋅ t ) h ( t ) η = Q ( θ ) θ = Q − 1 ( η ) c 0 ( η ) exp ( η ⋅ t ) h ( t ) = g ( t ; η )
⟹ θ = θ 0 ⟺ η = η 0 θ 1 ≤ θ ≤ θ 2 ⟺ η 1 ≤ η ≤ η 2 \implies \theta=\theta_0 \iff \eta=\eta_0\qquad \theta_1\le\theta\le\theta_2\iff \eta_1\le\eta\le\eta_2 ⟹ θ = θ 0 ⟺ η = η 0 θ 1 ≤ θ ≤ θ 2 ⟺ η 1 ≤ η ≤ η 2
UMPU test exist when p.d.f is of this form
c ( θ , ξ 1 , ξ 2 , ⋯ , ξ k ⏟ nuisance param ) exp ( θ T ( x ~ ) + ∑ i = 1 k ξ i U i ( x ~ ) ) h ( x ~ ) ∈ (k+1)-par exp family c(\theta,\underbrace{\xi_1,\xi_2,\cdots,\xi_k}_{\text{nuisance param}})\exp\left(\theta T(\utilde{x})+\sum_{i=1}^k\xi_iU_i(\utilde{x})\right)h(\utilde{x})\in\text{ (k+1)-par exp family} c ( θ , nuisance param ξ 1 , ξ 2 , ⋯ , ξ k ) exp ( θT ( x ) + i = 1 ∑ k ξ i U i ( x ) ) h ( x ) ∈ (k+1)-par exp family of interest is θ ∈ R \theta\in\R θ ∈ R and nulls are
H 0 1 : θ ≤ θ 0 v.s. H 1 1 : θ > θ 0 H 0 2 : θ ≥ θ 0 v.s. H 1 2 : θ < θ 0 H 0 3 : θ 1 ≤ θ ≤ θ 2 v.s. H 1 3 : θ < θ 1 or θ > θ 2 H 0 4 : θ ≤ θ 1 or θ ≥ θ 2 v.s. H 1 4 : θ 1 < θ < θ 2 H 0 5 : θ = θ 0 v.s. H 1 5 : θ ≠ θ 0 \begin{alignat*}{2}
&H_0^1:\theta\le\theta_0 &\quad\text{ v.s. }\quad &H_1^1:\theta>\theta_0\\
&H_0^2:\theta\ge\theta_0 &\quad\text{ v.s. }\quad &H_1^2:\theta<\theta_0\\
&H_0^3:\theta_1\le\theta\le\theta_2 &\quad\text{ v.s. }\quad &H_1^3:\theta<\theta_1\text{ or }\theta>\theta_2\\
&H_0^4:\theta\le\theta_1\text{ or }\theta\ge\theta_2 &\quad\text{ v.s. }\quad &H_1^4:\theta_1<\theta<\theta_2\\
&H_0^5:\theta=\theta_0 &\quad\text{ v.s. }\quad &H_1^5:\theta\neq\theta_0
\end{alignat*} H 0 1 : θ ≤ θ 0 H 0 2 : θ ≥ θ 0 H 0 3 : θ 1 ≤ θ ≤ θ 2 H 0 4 : θ ≤ θ 1 or θ ≥ θ 2 H 0 5 : θ = θ 0 v.s. v.s. v.s. v.s. v.s. H 1 1 : θ > θ 0 H 1 2 : θ < θ 0 H 1 3 : θ < θ 1 or θ > θ 2 H 1 4 : θ 1 < θ < θ 2 H 1 5 : θ = θ 0 基本上,H 0 H_0 H 0 的拒絕區域取決於 H 1 H_1 H 1 的範圍。並通過計算顯著水準來確定拒絕的分界點。
EX : X 1 , ⋯ , X n ∼ iid N ( θ , σ 2 ) ⟹ ( X ˉ , S 2 ) X_1,\cdots,X_n\overset{\text{iid}}{\sim}N(\theta, \sigma^2)\implies(\bar{X}, S^2) X 1 , ⋯ , X n ∼ iid N ( θ , σ 2 ) ⟹ ( X ˉ , S 2 ) : sufficient for ( θ , σ 2 ) (\theta, \sigma^2) ( θ , σ 2 ) with θ , σ 2 \theta, \sigma^2 θ , σ 2 unknown.
⟹ H 0 : θ ≤ θ 0 \implies H_0:\theta\le\theta_0 ⟹ H 0 : θ ≤ θ 0 v.s. H 1 : θ > θ 0 H_1:\theta>\theta_0 H 1 : θ > θ 0 , UMPU level α \alpha α test is reject H 0 H_0 H 0 if n ( x ˉ − θ 0 ) / S ⏟ ∼ t n − 1 > t n − 1 , α \underbrace{\sqrt{n}(\bar{x}-\theta_0)/S}_{\sim t_{n-1}}>t_{n-1,\alpha} ∼ t n − 1 n ( x ˉ − θ 0 ) / S > t n − 1 , α