單 normal distribution 的參數檢定
X1,⋯,Xn∼iidN(θ,σ2)∈ 2-par exp family with θ,σ2 unknown
Recall
⊥⟨θ^=Xˉσ2^=S2=n1i=1∑nXi∼N(θ,nσ2)=n−11i=1∑n(Xi−Xˉ)2with σ2(n−1)S2=σ2∑(Xi−Xˉ)2∼χn−12
H0:θ≤=θ0 v.s. H1:θ>θ0
UMPU level α test is rejects H0 if
∼θ=θ0tn−1S2/nxˉ−θ0=Sn(xˉ−θ0)>tn−1,α
事實上,這就是 LRT。
Note
tk=χk2/kN(0,1)⟩⊥ and χk2=∑kχ12
LLNXˉPk→∞1⟹tkPk→∞N(0,1)⟹tk,αPk→∞Zα
H0:θ≥θ0 v.s. H1:θ<θ0
UMPU level α test is reject H0 if
Sn(xˉ−θ0)<−tn−1,α=tn−1,1−α
事實上,這就是 LRT。
H0:θ=θ0 v.s. H1:θ=θ0
UMPU level α test is reject H0 if
Sn(xˉ−θ0)>tn−1,α/2 or Sn(xˉ−θ0)<−tn−1,α/2
⟺Sn(xˉ−θ0)>tn−1,α/2
H0:σ2≤=σ02 v.s. H1:σ2>σ02
UMPU level α test is reject H0 if
∼σ2=σ02χn−12σ02(n−1)S2>χn−1,α2
事實上,它會是 UMP, LRT。
H0:σ2≥σ02 v.s. H1:σ2<σ02
UMPU level α test is reject H0 if
σ02(n−1)S2<χn−1,1−α2
H0:σ2=σ02 v.s. H1:σ2=σ02
UMPU level α test is
ϕ(x)={10if σ02(n−1)S2>k1 or σ02(n−1)S2<k2otherwise
with k1,k2 s.t. Eσ02ϕ(x)=α and Eσ02[Tϕ(x)]=α⋅Eσ02T=(n−1)α
i.e.∫k2k1gn−1(t)dt=1−α and ∫k2k1tgn−1(t)dt=(n−1)(1−α) where gn−1 is pdf of χn−12
⟹ 只有數值解。此時我們通常會用 equal-tailed test,即左右拒絕區域面積都是 α/2 (χ2 不對稱)。
i.e.ϕ∗={10 if σ02(n−1)S2>χn−1,α/22 or σ02(n−1)S2<χn−1,1−α/22 otherwise
Fact: ϕ∗→[n→∞]Dϕ
雙 normal distribution 的參數檢定
⊥⟨X1,⋯,Xn∼iidN(θx,σx2)Y1,⋯,Ym∼iidN(θy,σy2)
⟹⊥⟨Xˉ−Yˉ∼N(θx−θy,nσx2+mσy2)σx2∑n(Xi−Xˉ)2+σy2∑m(Yi−Yˉ)2∼χn+m−22
⟹σx2=σ2=σy2nσx2+mσy2[σx2∑n(Xi−Xˉ)2+σy2∑m(Yi−Yˉ)2]/(n+m−2)Xˉ−Yˉ−(θx−θy)d⊥⟨n+m−2χn+m−22N(0,1)∼tn+m−2(n1+m1)Sp2Xˉ−Yˉ−(θx−θy)∼tn+m−2Sp2=n+m−2(n−1)Sx2+(m−1)Sy2
H0:σx2≤τ0σy2 v.s. H1:σx2>τ0σy2⟺H0:σx2/σy2≤τ0 v.s. H1:σx2/σy2>τ0
Sy2/σy2Sx2/σx2=dχm−12/(m−1)χn−12/(n−1)∼Fn−1,m−1
UMPU level α test is reject H0 if Sy2/σy2Sx2/σx2>Fn−1,m−1,α⟺Sy2Sx2>τ0⋅Fn−1,m−1,α with
β(σy2σx2=τ>τ0)=P(Sy2/σy2Sx2/σx2>σx2σy2τ0⋅Fn−1,m−1,α)=P(Fn−1,m−1>ττ0⋅Fn−1,m−1,α)
H0:σx2≥τ0σy2 v.s. H1:σx2<τ0σy2
UMPU level α test is reject H0 if Sy2Sx2<τ0⋅Fn−1,m−1,1−α
H0:σx2=τ0σy2 v.s. H1:σx2=τ0σy2
Usually, we use equal-tailed test. I.e. Reject H0 if
Sx2Sy2>τ01⋅Fn−1,m−1,α/2 or Sx2Sy2<τ01⋅Fn−1,m−1,1−α/2
Assume σx2=σy2=σ2
H0:θx≤θy v.s. H1:θx>θy
UMPU level α test is reject H0 if
∼tn+m−2Sp2(n1+m1)xˉ−yˉ>tn+m−2,α
H0:θx=θy v.s. H1:θx=θy
UMPU level α test is reject H0 if
Sp2(n1+m1